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Abstract

Background: Perioperative myocardial injury has often been attributed to type 2 myocardial infarction, but acute sys-

temic inflammation could also contribute. We examined the role of systemic inflammation in myocardial injury after 

abdominal surgery using a murine model.

Methods: Male C57BL/6 mice underwent standardised abdominal surgery or anaesthesia alone. Myocardial injury (serum 

cardiac troponin I [cTnI]) and systemic inflammation (serum interleukin-6 [IL-6]) were quantified (enzyme-linked 

immunoassay) at 1 h to 7 days after surgery with anaesthesia or anaesthesia alone. Transcriptomic changes in 

myocardial tissue were analysed by RNA sequencing, with protein level confirmation by immuno blotting and immu-

nostaining. Data are presented as mean (SD).

Results: Surgery induced an early elevation in cTnI, peaking at 277.8 (69.0) pg ml − 1 within 3 h after surgery, compared 

with 6.8 (1.6) pg ml − 1 in anaesthesia-only controls (P<0.001). Higher cTnI levels were paralleled by serum IL-6 peaking at 3 

h. Perioperative heart rate was similar between each group. RNA sequencing of myocardial tissue showed an acute 

inflammatory—stress response, with marked upregulated transcription of members of the pro-inflammatory S100 

calcium-binding protein family, S100A8 and S100A9. Protein expression of S100A9 was predominantly increased in 

cardiac macrophages after surgery. Pharmacological inhibition of S100A8/A9 with the potent S100A8/A9 antagonist ABR-

238901 (30 mg kg − 1 , i.p.) administered 60 min before surgery, reduced myocardial injury as indicated by lower cTnI 3 h 

after surgery. ABR-238901 had no effect on circulating IL-6 levels.

Conclusions: Myocardial injury after abdominal surgery in mice involves a local, macrophage-mediated inflammatory 

response, the inhibition of which reduces postoperative cTnI elevation.
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Editor’s key points

• Acute systemic inflammation can contribute to 

perioperative myocardial injury, but the mechanisms

remain unclear, in part owing to few mechanistic 

models.

• In this murine model, transcriptomic and proteomic 

markers of myocardial injury were compared be-

tween male mice randomised to undergo
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standardised abdominal surgery with anaesthesia or 

anaesthesia alone.

• Surgery induced an early, parallel increase in circu-

lating troponin and interleukin-6, a cytokine marker 

of systemic inflammation.

• In myocardial tissue, RNA sequencing and protein 

levels showed markedly higher levels of the pro-

inflammatory mediator S100 calcium-binding pro-

tein family member S100A9, likely derived from 

activated cardiac macrophages.

• Myocardial injury was reduced by pharmacologically 

inhibiting the acute myocardial inflammatory 

response mediated by S100A8/A9.

Perioperative myocardial injury (PMI), defined by elevated 

troponin levels, occurs frequently in older individuals under-

going noncardiac surgery. 1—5 Although often asymptomatic, 

PMI is associated with increased postoperative mortality and 

morbidity. PMI is often attributed to oxygen supply—demand 

mismatch as a result of perioperative haemodynamic 

changes, such as hypotension, implying type 2 myocardial 

infarction as the predominant mechanism. 6—12 However, 

robust mechanistic studies are lacking. 13 Even with 

anaesthetic strategies aimed at avoiding hypotension, the 

incidence of PMI has remained unaltered, suggesting that 

additional factors may contribute to its development. 13—15 

Systemic inflammation triggered by surgical tissue injury 

has been proposed as an alternative contributor to myocardial 

injury, independent of oxygen supply—demand imbalance. 13 

Several clinical studies have reported correlations between 

perioperative inflammation and troponin elevation. 16,17 

Furthermore, some studies have demonstrated that the 

exposure of cardiomyocytes to septic serum or inflammatory 

cytokines leads to cellular damage, supporting the hypothesis 

that inflammation contributes directly to myocardial injury. 18,19 

However, the specific molecular changes that occur within 

the myocardium in response to systemic inflammation asso-

ciated with surgical trauma remain poorly understood, largely 

attributable to the scarcity of relevant animal models that 

facilitate mechanistic investigation. Considering the practical 

and ethical limitations of obtaining myocardial biopsies from 

humans after PMI, the development of a reliable animal model 

could help advance research in this field. Therefore, the pri-

mary objective of this study was to establish a reproducible 

model of myocardial injury defined by postoperative troponin 

level elevation after abdominal surgery in mice. While the 

human PMI course is complicated by age and comorbidities, 

this study used healthy, uniform mice to clarify the funda-

mental molecular response of the myocardium to surgery. The 

secondary objective was to perform transcriptomic and pro-

tein analyses of myocardial tissue obtained from this model to 

elucidate the pathophysiology of troponin release after major 

surgery.

Methods

All experiments were approved by the Institutional Animal 

Care and Use Committee of Sapporo Medical University (no. 

23-083 and 24-070) and adhered to the Animal Research: 

Reporting of In Vivo Experiments guidelines (ARRIVE guide-

lines, Supplementary material) and the Guide for the Care and

Use of Laboratory Animals (Institute for Laboratory Animal 

Research, 8th edition).

Animals

Male C57BL/6JJcl mice (Hokudo, Sapporo, Japan), aged 14—16 

weeks and weighing 24—29 g, were used. In accordance 

with the 3Rs principles and preclinical guidelines, only 

male mice were used to minimise the number of ani-

mals required and avoid the potential confounding car-

dioprotective effects of female hormones. 20 Mice were housed 

in groups of three to four per cage at our specific pathogen-free 

institutional animal facility. They were maintained in a 

temperature-controlled room (22—24 ◦ C) on a 12-h light/dark 

cycle with ad libitum access to standard laboratory chow and 

water.

Anaesthesia and surgical procedure

Laparotomy was performed using a previously described model 

of postoperative cognitive dysfunction, with minor modifica-

tions (Supplementary material, Methods S1 and S2). 21 

Anaesthesia was induced with 5 vol% sevoflurane (Viatris, 

Canonsburg, PA, USA) and maintained at 3 vol% sevoflurane 

in 1000 ml min − 1 fresh gas flow under spontaneous breathing. 

Mice were placed on a heating pad to maintain a rectal 

temperature of 37 ◦ C. Buprenorphine injection (0.1 mg kg − 1 ; 

Nisshin Pharmaceutical, Yamagata, Japan) was administered 

subcutaneously for analgesia. A 2-cm midline vertical abdom-

inal incision was made, and the intestinal loops were exteri-

orised to ~ 10 cm and vigorously manipulated for 30 s. The loops 

were kept externalised for 1 min before repositioning into the 

abdominal cavity. Closure was performed with sterile tech-

nique with 4-0 Vicryl (Ethicon, Somerville, NJ, USA) for the 

peritoneum and abdominal musculature, and 4-0 silk (Akiyama 

Medical Mfg, Tokyo, Japan) for skin. The entire procedure lasted 

~15 min. Anaesthesia was monitored throughout, with 

continuous assessment of respiratory rate and rhythm and 

electrocardiogram, and the total anaesthesia duration was 

standardised to 20 min. In the anaesthesia-only group, mice 

received 20 min of sevoflurane at the same concentration and 

flow rate, with buprenorphine administered subcutaneously 

(0.1 mg kg − 1 ). After recovery, mice were re-anaesthetised with 

sevoflurane at designated time points for blood sampling via the 

inferior vena cava and cardiac puncture.

Enzyme-linked immunosorbent assays (ELISA)

Blood samples were collected from the inferior vena cava 

under terminal anaesthesia. Serum concentrations of cardiac 

troponin I (cTnI), interleukin-6 (IL-6), and S100A9 were deter-

mined using enzyme-linked immunosorbent assays (ELISA) 

(Supplementary material, Methods S3).

Myocardial histology

Cardiac tissue was fixed in 10% neutral-buffered formalin and 

embedded in paraffin. A 4-μm thick short-axis section was ob-

tained from the mid-ventricular section of the embedded heart 

base. S100A9 immunohistochemistry was performed using 

automated immunostaining (Supplementary material, Methods 

S4 and S5). Quantitative analyses of immunostaining were 

performed in a blinded manner.
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Transthoracic echocardiography

Cardiac function was assessed under general anaesthesia using 

a uSmart3200T (Terason, Burlington, MA, USA) 24 h after lapa-

rotomy or anaesthesia. This single time point was chosen to 

avoid the confounding effects of multiple exposures to volatile 

anaesthetics for repeated echocardiographic measurements, 

which we quantified by analysers blinded to treatment group 

(Supplementary material, Methods S6).

Transcriptomic and protein expression analyses

Total RNA extracted for quantitative polymerase chain reac-

tion (qPCR) was processed using a Turbo DNase-free kit 

(Thermo Fisher Scientific, Waltham, MA, USA). RNA quality 

was evaluated using the RNA integrity number using the 

Agilent 4200 TapeStation system (Agilent Technologies, Santa 

Clara, CA, USA) with the RNA ScreenTape assay, and 

sequencing libraries were prepared using the NEBNext Ultra II 

Directional RNA Library Prep Kit for Illumina (San Diego, CA, 

USA) (New England Biolabs; #E7760). Sequencing was per-

formed on the NovaSeq 6000 (Illumina) platform in a 2×150 bp 

paired-end configuration with more than 20 million reads per 

sample. Additional details on western blotting 

(Supplementary Table 1) and qPCR (Supplementary Table 2) 

are provided in Supplementary material, Methods S7—S10.

Statistical analysis

Normality of data distribution was evaluated using the 

Shapiro—Wilk test. Normally distributed variables are pre-

sented as mean (standard deviation). For comparisons be-

tween two groups, unpaired t-test (for normally distributed 

variables) or Mann—Whitney U-test (for non-normally 

distributed variables) was applied. For comparisons involving 

three or more groups, one-way or two-way analysis of vari-

ance (ANOVA) with Tukey, Dunnett, or Bonferroni multiple-

comparison test was applied for normally distributed 

variables; the Kruskal—Wallis test, followed by Dunn’s multi-

ple comparisons test, was applied for non-normally distrib-

uted variables. P-value <0.05 was considered statistically 

significant. All analyses were performed using GraphPad 

Prism version 9 (GraphPad Software LLC, San Diego, CA, USA). 

RNA sequencing (RNA-seq) data, the analysis of which is 

provided in Supplementary material, are available at the Na-

tional Center for Biotechnology Information Gene Expression 

Omnibus (NCBI GEO) (GSE296854); the corresponding raw 

reads are archived in the DNA Data Bank of Japan Sequence 

Read Archive (DDBJ SRA) (DRR659466—DRR659481; BioProject 

PRJDB20513). Sample size estimates are provided in Supple-

mentary material (Methods S11).

Results

Abdominal surgery induced transient elevation of 
serum troponin I and systemic inflammation

After surgery and collection of blood and myocardial tissue at 

predetermined time points (Fig. 1a), a transient elevation in 

serum cTnI was observed, compared with mice randomised 

to anaesthesia alone (Fig. 1b). Peak troponin I levels occurred 

at 3 h and remained elevated up to 12 h. Serum levels of the 

systemic inflammatory marker IL-6 followed a similar time 

course (Fig. 1c, Supplementary Fig. 1). These biochemical 

markers of myocardial injury and systemic inflammation

occurred without changes in peri-procedural heart rate, car-

diac contractility at 24 h, overt histological abnormalities in 

the myocardium, or haemoglobin concentration (Fig. 1d and f, 

Supplementary Table 3).

Myocardial RNA sequencing identified early 
inflammatory—stress responses after surgery

RNA-seq of myocardial tissue samples collected immediately 

after surgery and at 3 h, 24 h, and 7 days after surgery (Fig. 2a) 

showed distinct clustering patterns (Fig. 2b). Bioinformatic 

analysis identified 212, 434, and 42 differentially expressed 

genes (DEGs) at each time point after surgery, compared with 

no surgery (Fig. 2c), with nine genes differentially expressed 

at all time points (Fig. 2d). S100A8 and S100A9 exhibited the 

largest fold change at 3 and 24 h, with higher expression of 

these genes persisting for 7 days (Fig. 2e). Bioinformatic 

analysis revealed that, at 3 h, the most enriched terms were 

associated with responses to stimuli and stress, including 

pathways related to cell death and inflammation (Fig. 2f, 

Supplementary Figs 2 and 3, Supplementary Table 4). 

Consistent with the transcriptomic response indicating 

inflammation and cellular stress, western blot analysis 

confirmed increased phosphorylation of p38 mitogen-

activated protein kinase (MAPK) and decreased phosphoryla-

tion of Akt in the myocardium after surgery (Supplementary 

Fig. 4).

Myocardial S100A9 mRNA and protein levels are 
increased after abdominal surgery

From our bioinformatic analyses, we next hypothesised that 

S100A8/A9-associated myocardial inflammation contributes 

to myocardial injury, as this pro-inflammatory mediator me-

diates myocardial dysfunction after sepsis and myocardial 

infarction. 22—24 qPCR analysis confirmed increased S100A8 and 

S100A9 mRNA expression in heart, consistent with RNA-seq 

data (Fig. 3a, Supplementary Fig. 5). Given the predominance 

of S100A9 mRNA expression compared with S100A8, our 

subsequent evaluation of protein expression and serum 

concentrations focused on S100A9. Western immunoblot 

analysis of myocardial tissue lysates showed increased 

S100A9 protein expression (Fig. 3b). Immunohistochemical 

staining also confirmed more S100A9-positive cells in the 

surgery group compared with the control group at 3 h after 

surgery (Fig. 3c). Serum S100A9 concentration increased at 3 h 

after surgery, peaking at 24 h (Fig. 3d).

S100A9 expression after surgery localises 
predominantly to Iba-1 positive macrophages

Immunofluorescent staining showed that S100A9 co-localised 

primarily with Iba-1-positive cells, a marker for macrophages 

and monocytes (Fig. 4a). Limited co-localisation with Ly-6G 

positive neutrophils was observed, but there was a very low 

number of neutrophils in the myocardial tissue (Fig. 4b). The 

overall density of Iba-1-positive cells (Iba-1 + cells per mm 2 ) 

did not differ between control and surgery groups, whereas 

the density of S100A9-expressing Iba-1-positive cells was 

higher in the surgery group (Fig. 4c). Deconvolution analysis of 

bulk RNA-seq data confirmed that there were no differences in 

the estimated proportions of macrophages or neutrophils 

(Fig. 4d).
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mean (SD) or box plots and whiskers. ANOVA, analysis of variance; BGA, blood gas analysis; cTnI, cardiac troponin I; IL-6, interleukin-6; LLOQ, 

lower limit of quantitation.
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S100A8/A9 inhibition mitigates postoperative 
myocardial injury

We next examined the effects of S100A8/A9 inhibition at 3 h 

after surgery, the time point at which peak cTnI elevation was 

observed (Fig. 5a). ABR-238901 (30 mg kg − 1 i.p.), a potent

S100A8/A9 antagonist, administered 60 min before surgery 

reduced the increase in serum cTnI concentration 3 h after 

surgery (Fig. 5b). ABR-238901 did not alter cTnI concentrations 

in mice that underwent anaesthesia alone (Supplementary 

Fig. 6). IL-6 concentration increased in both vehicle and ABR 

groups, compared with the sham group (Fig. 5c). Although Akt
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phosphorylation remained unchanged, ABR-238901 inhibited 

the protein phosphorylation of p38, a downstream target of 

S100A8/A9 in myocardial tissue lysates (Fig. 5d).

Discussion

In this translational laboratory study, we found that myocar-

dial injury after abdominal surgery in mice was inhibited by 

likely macrophage-specific inhibition of the acute myocardial 

inflammatory response. Despite the growing clinical concern 

regarding PMI and its association with excess mortality after 

noncardiac surgery, 2—5,12,25 basic research into the underlying 

mechanisms remains limited. Few studies have used animal 

models to elucidate their pathophysiology and potential 

therapeutic interventions. We performed abdominal 

noncardiac surgery in mice, which is commonly used in 

animal studies of postoperative cognitive dysfunction, to 

induce a subsequent elevation in troponin concentrations. 

The transient postoperative inflammatory response closely 

resembles that observed in clinical surgical settings. 26 In 

addition, the absence of overt heart contractile dysfunction 

and the high survival rate in our model distinguish it from

existing ischaemia—reperfusion injury models by left ante-

rior descending coronary artery ligation, sepsis models by 

caecal ligation and puncture, or lipopolysaccharide 

administration. 22,27,28

Few basic studies have investigated perioperative myocar-

dial injury after noncardiac surgery. The impact of hip frac-

tures on inflammation in myocardial tissue has been

assessed, 29 while the effect of abdominal surgery in mice on 

histological and metabolic changes in the myocardium have 

also been reported. 30 However, these studies did not measure

blood troponin concentrations, which are important for 

defining PMI. Elevated cTnI occurs as early as 1.5 h after a 

long bone fracture in pigs, which was attributed to the 

subsequent systemic inflammatory response rather than 

haemodynamic instability. 19,31 Our study is valuable as it 

used mice, an advantageous experimental model in terms of 

genetic manipulation and ease and cost of surgery. We 

evaluated postoperative troponin levels over time and were 

the first to perform transcriptomic analysis of myocardium 

affected by systemic stress of noncardiac surgery. Although

the incidence of PMI in humans is estimated at ~20%,1—5 all 

mice in our model exhibited elevated troponin levels. This
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discrepancy may be attributable to inter-individual variability 

in human patients, including age, comorbidities, and the 

invasiveness of surgery, whereas the mice used were

homogeneous in sex, age, and invasiveness of surgery. 

Furthermore, ~50% of cats experience postoperative troponin 

elevation above the upper reference limit, suggesting a species-
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related difference. 32 Therefore, this model likely does not fully 

reflect human PMI with its complex clinical background, but 

rather serves as a reproducible platform for investigating the 

fundamental molecular mechanisms by which the 

myocardium responds to the systemic stress of noncardiac 

surgery.

S100A8 and S100A9, members of the S100 calcium-binding 

protein family, often function as heterodimers. 23 These 

proteins are involved in various cellular processes, including

inflammation, immune responses, and cell proliferation, and 

have recently gained attention as important mediators in 

myocardial ischaemia—reperfusion injury and septic car-

diomyopathy. 22—24 RNA-seq results in this study revealed that 

S100A8 and S100A9 were significantly upregulated in the 

myocardium shortly after surgery in this myocardial injury 

model. In addition, gene ontology (GO) analysis showed that 

pathways associated with responses to stimuli and inflam-

mation were enhanced at 3 h after surgery, with enhanced
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metabolic activity at 24 h. Concurrently, tissue development 

and morphogenesis were suppressed during the period of 

activated inflammation and response to stimuli, indicating 

that surgery stress involves not merely cardiac troponin 

leakage but definite cellular and molecular alterations in the 

myocardium. These gene expression alterations in the injured 

myocardium were corroborated by the increased phosphory-

lation of p38 and decreased phosphorylation of Akt in the 

acute postoperative phase.

S100A8 and S100A9 are primarily expressed by immune 

cells, such as neutrophils and macrophages, but may also be 

induced in other cells by inflammatory or stress stimuli. 23 In 

myocardial ischaemia—reperfusion injury, local inflammation 

is thought to mobilise neutrophils and monocytes from bone 

marrow and blood into the myocardium, increasing S100A8/A9 

expression. 22,33 In contrast, our myocardial injury model 

exhibited increased S100A9 expression in the absence of 

marked changes in the proportion of inflammatory cells in 

the myocardium. This suggests that resident cells were likely 

activated by stimuli, such as reactive oxygen species and 

damage-associated molecular patterns released from the sur-

gical site, possibly leading to increased S100A9 expression 

rather than the infiltration of inflammatory cells into the 

myocardium. Neutrophils and macrophages have been previ-

ously thought to be the main sources of S100A9. 23 In our model, 

the scarcity of neutrophils indicates that macrophages, the 

predominant immune cells in the myocardium, are most 

likely source of S100A9.

Extracellularly released S100A8/A9 heterodimers bind to 

receptors such as receptors for advanced glycation end prod-

ucts (RAGE) and toll-like receptor 4 (TLR4), thereby activating 

downstream signalling pathways such as the MAPK pathway. 

This promotes the expression of inflammatory cytokines and 

chemokines, including IL-1β, IL-6, and IL-8. 23 These cytokines 

and chemokines contribute to inflammation, myocardial cell 

injury, and tissue remodelling. 23 Similarly, in this study, 

abdominal surgery led to increased myocardial S100A8/A9 

expression and p38 phosphorylation. However, p38 

phosphorylation may precede the increase in S100A9 

expression. This early activation may be driven not only by 

S100A9 but also by the release of damage-associated molecu-

lar patterns and reactive oxygen species. 34 Whereas S100A9 

increases MAPK activity via TLR4/RAGE binding, p38 activation 

also increases S100A9 expression through inflammation and 

stress, suggesting a complementary interaction driving 

complex biological responses. 23,35 Furthermore, ABR-238901, a 

potent S100A8/A9 inhibitor, successfully suppressed troponin 

release and myocardial inflammation, supporting the hypoth-

esis that this inflammatory axis contributes to the pathogenesis 

of myocardial injury in this model.

Our study has several limitations. Firstly, the general-

isability of our findings is limited owing to using 14—16-week-

old healthy male mice, which does not reflect the older, co-

morbid patient population most often affected by myocardial 

injury in the clinical setting. This model was intentionally 

selected to characterise fundamental mechanisms without 

confounding effects from age, comorbidities, or sex hormones; 

however, future studies in aged, comorbid, and female ani-

mals are warranted to enhance translational relevance. Sec-

ondly, certain methodological constraints should be noted. 

The inhibitor experiments required dimethyl sulfoxide as a 

solvent, which has known systemic anti-inflammatory prop-

erties 36 and can induce apoptosis after i.p. administration, 37,38 

potentially influencing drug efficacy and study outcomes. In

addition, continuous blood pressure monitoring was not 

performed owing to the technical challenges of accurate 

noninvasive measurement in mice, and cardiac function was 

assessed only at a single 24-h time point, which might have 

missed earlier or transient haemodynamic and functional 

changes.

In summary, this murine model demonstrated a repro-

ducible postoperative troponin elevation and an acute 

myocardial inflammatory response. Although this model 

does not fully recapitulate the complexity of human periop-

erative myocardial infarction, it provides a useful platform to 

investigate fundamental mechanisms, including myocardial 

responses to surgery-induced inflammation and to generate 

hypotheses for future translational studies.
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