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Abstract:

Calcineurin inhibitors, including tacrolimus (FK506), are used as 
immunosuppressive agents and can cause unexplained calcineurin 
inhibitor-induced pain syndrome (CIPS). We investigated how FK506 
affects the expression of NaV1.7, a voltage-gated Na+ channel implicated 
in pain perception that is upregulated in dorsal root ganglion (DRG) 
neurons in several pain disorders. We generated a model of FK506-
induced pain by administering FK506 to NaV1.7–ChR2 mice, which exhibit 
light-responsive pain. To evaluate nociceptive responses, paw withdrawal 
threshold (PWT) was measured using the von Frey test. The optogenetic 
place aversion (OPA) and light irradiation paw withdrawal tests were also 
performed. On the 11th day of initial injection, DRGs were dissected from 
mice under anesthesia and analyzed for NaV1.7 expression using 
quantitative reverse transcription PCR (RT-qPCR). PWT was also 
measured for mice that received the selective NaV1.7 inhibitor or vehicle. 
PWT was lower in FK506-treated mice than in those administered the 
vehicle on the 8th and 12th days after initial injection (P < 0.05). 
Mechanical hypersensitivity was reversible and peaked at around 10 days 
after FK506 administration. OPA and light irradiation paw withdrawal test 
results corroborated the hypersensitivity to light-responsivity. NaV1.7 
mRNA levels in DRG were higher in FK506-treated mice than in those 
administered the vehicle on the 11th day (P < 0.05). A selective NaV1.7 
inhibitor reversed FK506-induced pain. Increased NaV1.7 expression in 
DRG neurons may be responsible for FK506-induced peripheral 
neuropathy. Our findings suggest that endogenous calcineurin regulates 
NaV1.7 expression. Thus, selective NaV1.7 inhibition could be a potential 
therapeutic strategy for CIPS.
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5 Abstract

6 Calcineurin inhibitors, including tacrolimus (FK506), are used as immunosuppressive agents 

7 and can cause unexplained calcineurin inhibitor-induced pain syndrome (CIPS). We 

8 investigated how FK506 affects the expression of NaV1.7, a voltage-gated Na+ channel 

9 implicated in pain perception that is upregulated in dorsal root ganglion (DRG) neurons in 

10 several pain disorders. We generated a model of FK506-induced pain by administering 

11 FK506 to NaV1.7–ChR2 mice, which exhibit light-responsive pain. To evaluate nociceptive 

12 responses, paw withdrawal threshold (PWT) was measured using the von Frey test. The 

13 optogenetic place aversion (OPA) and light irradiation paw withdrawal tests were also 

14 performed. On the 11th day of initial injection, DRGs were dissected from mice under 

15 anesthesia and analyzed for NaV1.7 expression using quantitative reverse transcription PCR 

16 (RT-qPCR). PWT was also measured for mice that received the selective NaV1.7 inhibitor or 

17 vehicle. PWT was lower in FK506-treated mice than in those administered the vehicle on the 

18 8th and 12th days after initial FK506 injection (P < 0.05). Mechanical hypersensitivity was 

19 reversible and peaked at around 10 days after FK506 administration. OPA and light 

20 irradiation paw withdrawal test results corroborated the hypersensitivity to light-responsivity. 

21 NaV1.7 mRNA levels in DRG were higher in FK506-treated mice than in those administered 

22 the vehicle on the 11th day (P < 0.05). A selective NaV1.7 inhibitor reversed FK506-induced 

23 pain. Increased NaV1.7 expression in DRG neurons may be responsible for FK506-induced 

24 peripheral neuropathy. Our findings suggest that endogenous calcineurin regulates NaV1.7 

25 expression. Thus, selective NaV1.7 inhibition could be a potential therapeutic strategy for 

26 CIPS.

27
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28 Keywords: FK506, tacrolimus, calcineurin inhibitor-induced pain syndrome, dorsal root 
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30 Introduction

31 Calcineurin inhibitors, including tacrolimus (FK506) and cyclosporine, are commonly 

32 employed as immunosuppressive agents, particularly in transplantation medicine. 

33 Calcineurin is a Ca2+/calmodulin-dependent serine/threonine protein phosphatase that 

34 regulates a multitude of physiological processes, including ion channel activity and immune 

35 function.1,2 It is expressed at high levels in T cells and the nervous system, including the 

36 spinal dorsal horn and dorsal root ganglion (DRG).1,2 Primary sensory neurons in the DRG 

37 receive signals produced by peripheral nerve endings that then incorporate and transmit them 

38 to the spinal cord.

39 The use of calcineurin inhibitors is associated with unexplained severe pain, often 

40 referred to as calcineurin inhibitor-induced pain syndrome (CIPS), which is characterized by 

41 burning and episodic severe pain sensitivity in the lower extremities of patients.2–8 Although 

42 rare, CIPS is increasingly being recognized as a serious complication caused by calcineurin 

43 inhibitors. In animal CIPS models, calcineurin inhibitors have been reported to induce pain 

44 hypersensitivity via activation of synaptic N-methyl-D-aspartate (NMDA) receptors.1,9 

45 Despite the use of Ca2+ channel blockers and gabapentinoids as analgesics,10 the molecular 

46 mechanism underlying CIPS remains unclear and its treatment is challenging.

47 Voltage-gated sodium channels (VGSCs) are crucial for electrogenesis in excitable 

48 cells. NaV1.7, a VGSC subtype encoded by SCN9A, plays a critical role in pain signal 

49 transduction in humans.11–17 Genetic studies have recognized NaV1.7 dysfunction in human 

50 pain disorders. Inherited gain-of-function missense mutations in NaV1.7 occur in primary 

51 erythromelalgia,13,17–19 and recessively inherited loss-of-function mutations in SCN9A result 

52 in channelopathy-associated insensitivity to pain.13–15,20–22 NaV1.7 is selectively expressed in 
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53 DRG neurons and sympathetic ganglia, particularly being abundantly expressed in small-

54 diameter DRG neurons and preferentially expressed in nociceptors and during evoked action 

55 potential firing in A- and C-fibers.23–28 NaV1.7 is also implicated in pain perception in small 

56 animal models of pain. NaV1.7 expression is elevated in the DRG neurons of diabetic 

57 neuropathy,29 chronic constrictive injury (CCI),27 and paclitaxel-induced peripheral 

58 neuropathy rat models.30,31

59 In a previous study, we demonstrated that treatment of cultured bovine adrenal 

60 chromaffin cells with FK506 or cyclosporine increased NaV1.7 expression.32,33 Furthermore, 

61 erythromelalgia has been reported in patients receiving cyclosporine.34,35,36 Based on these 

62 findings, we aimed to investigate whether CIPS is involved in the upregulation of NaV1.7 in 

63 DRG neurons in a FK506-induced pain model, which was generated in light-responsive pain 

64 (NaV1.7–ChR2) mice previously developed by us.37–39 This study provides novel information 

65 about the contribution of NaV1.7 to CIPS.

66

67 Materials and Methods

68 Animal characteristics and pharmacological treatments

69 NaV1.7–ChR2 mice, weighing approximately 25–30 g, were used in this study. These mice 

70 were generated as previously described.37–39 All the mice were individually housed in a 

71 temperature- and humidity-controlled environment with a 12-h light–dark cycle and 

72 permitted free access to food and water. This study was conducted in strict accordance with 

73 the guidelines for the Proper Conduct of Animal Experiments (Science Council of Japan) and 

74 approved by the Experimental Animal Care and Use Committee (2024-511). Male mice, aged 

75 2–6 months, were used. All efforts were made to minimize the number of animals used and 
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76 their suffering. Mice in each group were randomly selected, and the experimenter blinded to 

77 the mouse group.

78 The experimental protocol is illustrated in Figure 1. We used a FK506-induced 

79 neuropathic pain model reported by Huang et al.40 FK506 (Cayman Chemical, Ann Arbor, 

80 MI, USA) was dissolved in dimethyl sulfoxide (DMSO) and phosphate-buffered saline at 0.3 

81 mg/mL. FK506 (3 mg/kg) was intraperitoneally (i.p.) administered to mice daily for one 

82 week under 2–3% sevoflurane anesthesia. Mice in the vehicle group were i.p. injected with 

83 the solvent vehicle (30% DMSO) daily for one week. The von Frey test was performed before 

84 and after (1, 4, 8, 12, 16, 20, and 24 days) FK506 or vehicle injection. On the 11th day after 

85 initial injection, the mice were decapitated after inhalational sevoflurane-induced anesthesia, 

86 and their DRGs then dissected. NaV1.7 expression was measured using reverse transcription-

87 PCR (RT-PCR). The optogenetic place aversion (OPA) test was simultaneously performed 

88 with the von Frey test. The light irradiation test was performed before FK506 injection and 

89 on the 11th day after initial FK506 injection. To determine the analgesic effects of DS-1971a, 

90 a selective NaV1.7 inhibitor, the von Frey test was performed before FK506 injection, as well 

91 as before and 2 h after DS-1971a or vehicle (0.5% methylcellulose) administration on the 

92 11th day after initial FK506 injection.

93

94 Estimation of mechanical sensitivity using the von Frey test

95 Mechanical sensitivity was examined by determining the paw withdrawal threshold (PWT) 

96 using an electronic von Frey esthesiometer (IITC Life Science Inc., Woodland Hills, CA, 

97 USA) fitted with a polypropylene tip. Each adult mouse was placed in a 10 cm × 10 cm 

98 suspended chamber with a metallic mesh floor. After acclimating the mice for 30 min, the 
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99 polypropylene tip was perpendicularly applied to the plantar surface of the right and left hind 

100 paws with sufficient force for 3–4 s. Brisk withdrawal or paw flinching was considered a 

101 positive response. The pain threshold was calculated as the mean of three measurements.

102 The analgesic effect of DS-1971a on FK506-induced neuropathic pain was determined 

103 using the von Frey test. One side of the hind paws of mice was tested for sensitivity to 

104 mechanical stimulus before FK506 injection, as well as before and 2 h after DS-1971a or 

105 vehicle administration on the 11th day after initial FK506 injection. DS-1971a (10 and 100 

106 mg/kg) in 0.5% methylcellulose or a vehicle (0.5% methylcellulose) was orally administered. 

107 The settings for DS-1971a administration were previously determined in a preliminary 

108 study.41

109

110 RT-PCR of DRG samples

111 Following euthanasia with sevoflurane, DRG samples from each mouse were obtained and 

112 dissected. Total cellular RNA was isolated from homogenized DRG samples via acid 

113 guanidinium thiocyanate-phenol-chloroform extraction using TRIzol reagent (Total RNA 

114 Isolation Reagent; Invitrogen, Carlsbad, CA, USA). The quality and quantity of the extracted 

115 RNA were assessed based on the optical density ratio at 260 and 280 nm measured using a 

116 NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). We 

117 obtained 500–1000 ng/L RNA from DRG samples and used 2 g total RNA to synthesize 

118 the cDNA template. RT-PCR was performed in a 20-µL reaction mixture using a first-strand 

119 cDNA synthesis kit (SuperScript II Reverse Transcriptase; Invitrogen), following the 

120 manufacturer’s instructions. PCR amplification was then performed on a thermal cycler 

121 (Veriti Thermal Cycler; Thermo Fisher Scientific) in a 20-μL reaction mixture containing 
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122 EmeraldAmp MAX PCR Master Mix (TAKARA Bio Inc., Shiga, Japan), 1 μL (estimated 

123 100 ng) cDNA template, and 0.4 μM forward and reverse primers. The following primers 

124 synthesized by Macrogen Global Headquarters (Seoul, Korea) were used for the PCR assays: 

125 NaV1.7-forward (5′-agatgcaacagcctctacca-3′), NaV1.7-reverse (5′-gagtttggcatagacctccgt-3′), 

126 β-actin-forward (5′-cgtaaagacctctatgccaaca-3′), and β-actin-reverse (5′-

127 cggactcatcgtactcctgct-3′). The PCR protocol comprised an initial denaturation step (10 min 

128 at 95°C), followed by 35 cycles (10 s at 98°C, 30 s at 60°C, and 60 s at 72°C) for NaV1.7 and 

129 27 cycles (10 s at 98°C, 30 s at 55°C, and 60 s at 72°C) for β-actin, and a final extension step 

130 (90 s at 72°C). The PCR products were separated via electrophoresis on a 2% agarose gel, 

131 and the bands visualized using a LAS-4000 lumino image analyzer (Fujifilm, Tokyo, Japan).

132

133 Assessment of aversive behavior 

134 Aversive behavior upon optogenetic stimulation was assessed using an OPA system 

135 (Bioresearch Center, Nagoya, Japan),37–39 which consisted of two chambers (20 cm × 24 cm) 

136 connected through an entrance. Each chamber floor was lit by a 20 × 24 array of LEDs of 

137 two different colors—green (530 nm) and blue (470 nm). To eliminate bias due to the natural 

138 preference for dark environments, both chambers were uniformly illuminated at a power of 

139 7 mW during the test. After habituating the mice to the chambers for 10 min with the LEDs 

140 switched off, each mouse was allowed to move freely for a further 10 min in the chambers 

141 with the LED switched on. The position of each mouse while the LEDs were turned on was 

142 recorded using a video camera and analyzed with BIOBSERVE Viewer 2 software. The 

143 percentage of time spent in each chamber during the 10-min observation period was 

144 determined.
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145

146 Light irradiation test

147 To determine light-responsive hypersensitivity due to FK506-induced hyperalgesia, a light 

148 irradiation paw withdrawal test37–39 was performed before FK506 injection and on the 11th 

149 day after initial FK506 injection. Mice were habituated for 1 h in transparent cubicles (10 cm 

150 × 6.5 cm × 6.5 cm) set atop a 5 mm-thick glass floor and separated from each other with 

151 opaque dividers. Acute nocifensive behaviors were elicited using a pulsing LED light (465 

152 nm blue light at 10 Hz; Doric Lenses Inc., Quebec, Canada) set at different intensities and 

153 aimed at the plantar surface of the hind paw. Light intensity was determined using a light 

154 power meter (LPM-100). As the power meter measures light intensity in mW, the light 

155 density in mW/mm2 was calculated by dividing the light intensity by the illuminated area in 

156 square millimeters (48 mm2). The mice underwent a total of five trials of 1 s each, with 5-s 

157 intervals between trials. The percentage of trials during which hind paw withdrawal or paw 

158 licking occurred was recorded.

159

160 Experimental design and statistical analysis

161 Each behavioral experiment was performed for n ≥10 animals, and RT-PCR performed for n 

162 = 5 animals. Data were analyzed using two-way analysis of variance (ANOVA), followed by 

163 Tukey’s HSD test. The results are presented as mean ± standard deviation (SD). Statistical 

164 significance was set at P < 0.05. The statistical software, JMP Pro 17 (SAS Institute, Inc., 

165 Cary, NC, USA) for Macintosh, was used for the analyses.

166
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167 Results

168 Mechanical hyperalgesia induced by FK506 treatment

169 To examine whether FK506 treatment induces mechanical hyperalgesia, we performed the 

170 von Frey test. As shown in Figure 2, compared with the vehicle group, significant mechanical 

171 hypersensitivity was observed in FK506-treated mice on the 8th and 12th days after initial 

172 FK506 injection (P < 0.05). This hypersensitivity was reversible and peaked between the 8th 

173 and 12th days after initial FK506 injection.

174

175 Upregulation of NaV1.7 expression by FK506 treatment

176 To confirm the upregulation of NaV1.7 expression upon FK506 treatment, we examined 

177 NaV1.7 mRNA levels in the DRGs of FK506- or vehicle-treated mice (Figure 3). NaV1.7 

178 mRNA levels in the FK506-treated group were significantly upregulated on the 11th day 

179 after initial FK506 injection compared with those in the vehicle-treated group (P = 0.007). 

180 On the 24th day, the levels were significantly reduced compared with those measured on the 

181 11th day (P = 0.01).

182

183 Optogenetic behavior test

184 As increased NaV1.7 expression is expected to be accompanied by upregulated expression of 

185 the light-responsive channel, channelrhodopsin 2 (ChR2), in NaV1.7−ChR2 mice (which are 

186 light-responsive pain mice), we verified the hypothesis that enhanced light-responsivity leads 

187 to stronger nociceptive pain upon light exposure. To investigate the change in light-

188 responsivity due to FK506 treatment, we performed OPA and light irradiation hind paw 

189 withdrawal tests. As shown in the OPA test (Figure 4a), the time spent by FK506-treated 
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190 mice in the blue floor room was significantly shorter than that spent by the vehicle group 

191 mice on the 8th and 12th days after initial FK506 injection, which was the same time when 

192 peak mechanical hypersensitivity was observed in the von Frey test (P < 0.05).

193 The FK506-treated mice were subjected to a light irradiation hind paw withdrawal 

194 test before and after (on the 11th day after initial FK506 injection) FK506 treatment. Figure 

195 4b shows the leftward shift of the light intensity-withdrawal response curve due to FK506 

196 treatment, indicating that the FK506 treatment made the mice hypersensitive to light.

197

198 Analgesic effect of DS-1971a on FK506-induced neuropathic pain

199 To investigate the analgesic effect of DS-1971a on FK506-induced neuropathic pain, we 

200 performed the von Frey test before FK506 injection (Pre), as well as before and 2 h after DS-

201 1971a or vehicle administration on the 11th day after initial FK506 injection. At 10 and 100 

202 mg/kg, DS-1971a completely relieved FK506-induced mechanical hypersensitivity (Figure 

203 5).

204

205 Discussion

206 As previously reported,40 FK506 treatment resulted in the induction of reversible neuropathic 

207 pain (Figure 2). Mechanical hypersensitivity peaked at around the 10th day after initial 

208 FK506 administration. Furthermore, as observed in previous in vitro studies,32,33 NaV1.7 

209 expression was elevated in DRGs during the onset of neuropathic pain (Figure 3). FK506-

210 induced pain could be effectively treated with a selective NaV1.7 inhibitor (Figure 5). These 

211 findings suggest that increased NaV1.7 expression plays a pivotal role in the pathogenesis of 

212 FK506-induced pain.
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213 Cyclosporine and FK506 form a complex with the immunophilins, cyclophilin A and 

214 FK506-binding protein 12 kDa (FKBP12), thereby inhibiting the phosphatase activity of 

215 calcineurin42 and consequently preventing the dephosphorylation of transcription factors 

216 belonging to the nuclear factor of activated T cells (NFAT) family in T cells. 

217 Dephosphorylation is essential for the nuclear translocation of NFAT, which in turn activates 

218 genes encoding various cytokines, including interleukin-2.

219 Although uncommon, severe pain symptoms induced by calcineurin inhibitors, termed 

220 CIPS, are characterized by burning and episodic severe pain sensitivity in the lower 

221 extremities, frequently accompanied by distress during standing and walking.7,8 In studies on 

222 CIPS model animals, gabapentinoids (2-1 inhibitors) glutamate NMDA receptor 

223 (NMDAR) antagonists,9 and casein kinase-2 (CK2) inhibitors1 have been demonstrated to 

224 restore pain sensitivity. This may be due to calcineurin inhibition enhancing the activity of 

225 presynaptic and postsynaptic NMDARs in the spinal dorsal horn.9,40,43 The 2-1 subunit 

226 forms a complex with phosphorylated NMDARs and enhances their activity.40,43 CK2, a 

227 serine/threonine protein kinase, enhances NMDAR activity similar to effect of 

228 calcineurin.1,43 Gabapentinoids, including pregabalin and gabapentin, are clinically 

229 employed for CIPS treatment.2,4–8 Despite evidence suggesting that calcineurin also regulates 

230 voltage-gated Ca2+ and TRPV1 channels, their association with CIPS remains unproven.43

231 Our findings indicate that FK506 induces NaV1.7 expression in the DRG. This is the 

232 first study to demonstrate the involvement of VGSC in an FK506-induced pain model. In 

233 clinical practice, selective NaV1.7 inhibitors may prove effective for CIPS treatment. 

234 Previous genetic studies have indicated that NaV1.7 is a key player in the processing of human 

235 pain, and it has thus become a focus in research as a therapeutic target for pain 
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236 treatment.13,15,16,44 NaV1.7 expression was reported to increase in animal models of 

237 inflammation, diabetes, and CCI,27,29,45 and a selective NaV1.7 inhibitor could reduce 

238 inflammatory and neuropathic pain in mice.16,41,46,47 Our results provide the first direct 

239 evidence that FK506 induces a significant increase in NaV1.7 expression in DRGs. 

240 Furthermore, we examined nociceptive behavior after administering DS-1971a, a selective 

241 NaV1.7 inhibitor.41 PWT was significantly increased after FK506 administration, 

242 highlighting the potential of NaV1.7 inhibitors as new targets for CIPS treatment.

243 The expression of VGSCs is regulated by a variety of mediators. NaV1.7 expression is 

244 reportedly affected by TNF-α levels and extracellular signal-regulated kinase 

245 phosphorylation in the DRGs.29,48,49 In addition, nerve growth factor and glial cell-derived 

246 neurotrophic factor can upregulate the expression of Na+ channels in the DRG.50 These 

247 findings suggest that NaV1.7 is involved in the FK506-mediated induction of neuropathic 

248 pain. Further studies are required to characterize the mechanisms underlying the upregulation 

249 of dorsal ganglionic NaV1.7 after FK506 administration.

250 In the present study, we demonstrated that light-responsive hypersensitivity occurs at 

251 the onset of neuropathic pain using a light-responsive pain mouse model (Figure 4). This is 

252 likely not solely attributable to the increased NaV1.7 expression observed; the design of 

253 genetic modification in NaV1.7–ChR2 mice may likely result in an increase in ChR2 

254 expression occurring concurrently with the increase in NaV1.7 levels.36–38 This finding 

255 indicates that NaV1.7–ChR2 mice can be used to screen for changes in the expression of 

256 NaV1.7.

257 This study had several limitations. First, although sex-related differences in pain 

258 threshold may exist, we did not focus on these differences in the current study; we 
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259 customarily used male mice, as was done in previous reports.9,38,41 Second, we concluded 

260 that FK506-induced NaV1.7 upregulation contributes to pain induction based on the increased 

261 NaV1.7 mRNA levels detected via RT-PCR, enhanced light-responsive pain expected from 

262 NaV1.7 upregulation, and attenuation of FK506-induced pain by a NaV1.7 inhibitor. Although 

263 additional data obtained from western blotting analysis or voltage-clamp recordings would 

264 provide multifaceted confirmation of NaV1.7 upregulation, these were not performed in the 

265 present study. Third, we demonstrated NaV1.7 upregulation using a mouse model that induces 

266 pain with FK506 administration; however, we considered that this cannot be directly applied 

267 to the pathogenesis of CIPS in humans. Further research, including clinical studies, is 

268 necessary to elucidate the pathogenesis of CIPS in humans. Fourth, calcineurin is a 

269 dephosphorylating enzyme; therefore, its inhibition maintains protein phosphorylation. 

270 Phosphorylation of NaV1.7 or other molecules is likely involved in CIPS. However, the 

271 present study did not investigate these possibilities.

272

273 Conclusion

274 We found that NaV1.7 was upregulated in the DRG of FK506-induced pain mice, and that its 

275 inhibition attenuated FK506-induced hyperalgesia. These findings provide new insights into 

276 the physiological function of calcineurin in pain transmission via the regulation of NaV1.7 at 

277 the DRG level. This information advances our understanding of the molecular mechanisms 

278 underlying CIPS and may help in developing a new strategy to deal with CIPS.

279
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468 Figure legends

469 Figure 1. In vivo experimental design. (a) FK506 or a vehicle (30% dimethyl sulfoxide 

470 [DMSO]) was intraperitoneally (i.p.) injected into mice daily for one week. The von Frey 

471 test was performed before and after (1, 4, 8, 12, 16, 20, and 24 days) injecting FK506 or the 

472 vehicle. On the 11th day after initial FK506 or vehicle injection, dorsal root ganglia (DRGs) 

473 were dissected from mice in each group, and NaV1.7 expression measured using reverse 

474 transcription PCR (RT-PCR). The optogenetic place aversion (OPA) test was simultaneously 

475 performed with the von Frey test. A light irradiation test was performed before FK506 

476 injection and on the 11th day after initial FK506 injection. (b) To determine the analgesic 

477 effects of DS-1971a, the von Frey test was performed before FK506 injection, as well as 

478 before and 2 h after administering DS-1971a or a vehicle (0.5% methylcellulose) on the 11th 

479 day after initial FK506 injection.

480

481 Figure 2. Paw withdrawal test (von Frey test). The von Frey test was performed before (Pre) 

482 and after (1, 4, 8, 12, 16, 20, and 24 days) injecting FK506 or a vehicle (30% dimethyl 

483 sulfoxide [DMSO]). The hind paw withdrawal data were analyzed using two-way analysis 

484 of variance, (ANOVA) followed by Tukey’s HSD test. All results are presented as mean ± 

485 standard deviation (SD) for 10 or more animals. *P < 0.05, compared with the vehicle group.

486

487 Figure 3. Reverse transcription PCR (RT-PCR) for NaV1.7 mRNA expression in dorsal root 

488 ganglion (DRG). NaV1.7 mRNA expression in DRG neurons measured using RT-PCR. β-

489 actin was used as a positive control to confirm successful mRNA extraction and equal loading 

490 of samples. Relative levels of NaV1.7 mRNA/β-actin mRNA are shown. Data were analyzed 
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491 using two-way analysis of variance (ANOVA), followed by Tukey’s HSD test, and presented 

492 as mean ± standard deviation (SD) for five animals.

493

494 Figure 4. Optogenetic place aversion (OPA) and light irradiation hind paw withdrawal tests. 

495 (a) The OPA test was performed before (Pre) and after (1, 4, 8, 12, 16, 20, and 24 days) 

496 injecting FK506 or a vehicle. Length of stay in the blue light floor room (%) was analyzed 

497 using an unpaired t-test. All results are presented as mean ± standard deviation (SD) for 10 

498 or more animals. *P < 0.05, compared with the vehicle group. (b) The blue light irradiation 

499 hind paw withdrawal test was performed before (Pre-FK506) and after (Post-FK506; on the 

500 11th day after FK506 initial injection) FK506 treatment. Red arrows indicate a leftward shift 

501 of the curve due to FK506 treatment. Data were analyzed using two-way analysis of variance 

502 (ANOVA), followed by Tukey’s HSD test. All results are presented as mean ± standard 

503 deviation (SD) for 10 or more animals. *P < 0.05, compared with Pre-FK506.

504

505 Figure 5. Analgesic effect of DS-1971a on FK506-induced neuropathic pain. The von Frey 

506 test was performed before FK506 injection (Pre), as well as before and 2 h after administering 

507 DS-1971a or a vehicle (0.5% methylcellulose) on the 11th day after initial FK506 injection. 

508 Data were analyzed using two-way analysis of variance (ANOVA), followed by Tukey’s 

509 HSD test. All data are presented as mean ± standard deviation (SD) for 10 animals. *P < 0.05, 

510 compared with Pre; †P < 0.05, compared with the vehicle group.
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Figure 1. In vivo experimental design. (a) FK506 or a vehicle (30% dimethyl sulfoxide [DMSO]) was injected 
into mice intraperitoneally (i.p.) daily for one week. The von Frey test was performed before and after (1, 4, 

8, 12, 16, 20, and 24 days) injecting FK506 or the vehicle. On the 11th day after initial FK506 or vehicle 
injection, dorsal root ganglions (DRGs) were dissected from mice in each group, and NaV1.7 expression 

measured using reverse transcriptase PCR (RT-PCR). The optogenetic place aversion (OPA) test was 
performed at the same time as the von Frey test. A light irradiation test was performed before FK506 

injection and on the 11th day after initial FK506 injection. (b) To determine the analgesic effects of DS-
1971a, the von Frey test was performed before FK506 injection, as well as before and 2 h after 

administering DS-1971a or a vehicle (0.5% methylcellulose) on the 11th day after initial FK506 injection. 
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Figure 2. Paw withdrawal test (von Frey test). The von Frey test was performed before (Pre) and after (1, 4, 
8, 12, 16, 20, and 24 days) injecting FK506 or a vehicle (30% dimethyl sulfoxide [DMSO]). The hind paw 

withdrawal data were analyzed using two-way analysis of variance, (ANOVA) followed by Tukey’s HSD test. 
All results are presented as mean ± standard deviation (SD) for 10 or more animals. *P < 0.05, compared 

with the vehicle group. 
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Figure 3. Reverse transcription PCR (RT-PCR) for NaV1.7 mRNA expression in dorsal root ganglion (DRG). 
NaV1.7 mRNA expression in DRG neurons measured using RT-PCR. β-actin was used as a positive control to 
confirm successful mRNA extraction and equal loading of samples. Relative levels of NaV1.7 mRNA/β-actin 
mRNA are shown. Data were analyzed using two-way analysis of variance (ANOVA), followed by Tukey’s 

HSD test, and presented as mean ± standard deviation (SD) for five animals. 
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Figure 4. Optogenetic place aversion (OPA) and light irradiation hind paw withdrawal tests. (a) The OPA test 
was performed before (Pre) and after (1, 4, 8, 12, 16, 20, and 24 days) injecting FK506 or a vehicle. Length 
of stay in the blue light floor room (%) was analyzed using an unpaired t-test. All results are presented as 
mean ± standard deviation (SD) for 10 or more animals. *P < 0.05, compared with the vehicle group. (b) 

The blue light irradiation hind paw withdrawal test was performed before (Pre-FK506) and after (Post-
FK506; on the 11th day after FK506 initial injection) FK506 treatment. Red arrows indicate a leftward shift 

of the curve due to FK506 treatment. Data were analyzed using two-way analysis of variance (ANOVA), 
followed by Tukey’s HSD test. All results are presented as mean ± standard deviation (SD) for 10 or more 

animals. *P < 0.05, compared with Pre-FK506. 
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Figure 5. Analgesic effect of DS-1971a on FK506-induced neuropathic pain. The von Frey test was 
performed before FK506 injection (Pre), as well as before and 2 h after administering DS-1971a or a vehicle 
(0.5% methylcellulose) on the 11th day after initial FK506 injection. The data were analyzed using one-way 

ANOVA followed by Bonferroni post-hoc analysis or an unpaired t-test. All data are presented as mean ± 
standard deviation (SD) for 10 animals. *P < 0.05, compared with Pre; †P < 0.05, compared with the 

vehicle group. 
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