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Calcineurin inhibitors, including tacrolimus (FK506), are used as
immunosuppressive agents and can cause unexplained calcineurin
inhibitor-induced pain syndrome (CIPS). We investigated how FK506
affects the expression of Nayl.7, a voltage-gated Na* channel implicated
in pain perception that is upregulated in dorsal root ganglion (DRG)
neurons in several pain disorders. We generated a model of FK506-
induced pain by administering FK506 to Nay1.7-ChR2 mice, which exhibit
light-responsive pain. To evaluate nociceptive responses, paw withdrawal
threshold (PWT) was measured using the von Frey test. The optogenetic
place aversion (OPA) and light irradiation paw withdrawal tests were also
performed. On the 11th day of initial injection, DRGs were dissected from
mice under anesthesia and analyzed for Nayl.7 expression using
quantitative reverse transcription PCR (RT-gPCR). PWT was also
measured for mice that received the selective Nay1.7 inhibitor or vehicle.
PWT was lower in FK506-treated mice than in those administered the
vehicle on the 8th and 12th days after initial injection (P < 0.05).
Mechanical hypersensitivity was reversible and peaked at around 10 days
after FK506 administration. OPA and light irradiation paw withdrawal test
results corroborated the hypersensitivity to light-responsivity. Nayl1.7
mRNA levels in DRG were higher in FK506-treated mice than in those
administered the vehicle on the 11th day (P < 0.05). A selective Nay1.7
inhibitor reversed FK506-induced pain. Increased Nay1.7 expression in
DRG neurons may be responsible for FK506-induced peripheral
neuropathy. Our findings suggest that endogenous calcineurin regulates
Nay1.7 expression. Thus, selective Nay1.7 inhibition could be a potential
therapeutic strategy for CIPS.
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6  Calcineurin inhibitors, including tacrolimus (FK506), are used as immunosuppressive agents
and can cause unexplained calcineurin inhibitor-induced pain syndrome (CIPS). We
13 8 investigated how FK506 affects the expression of Nayl.7, a voltage-gated Na*™ channel
15 9 implicated in pain perception that is upregulated in dorsal root ganglion (DRG) neurons in
17 10 several pain disorders. We generated a model of FK506-induced pain by administering
19 11 FK506 to Nay1.7-ChR2 mice, which exhibit light-responsive pain. To evaluate nociceptive
21 12 responses, paw withdrawal threshold (PWT) was measured using the von Frey test. The
23 13 optogenetic place aversion (OPA) and light irradiation paw withdrawal tests were also
2% 14  performed. On the 11th day of initial injection, DRGs were dissected from mice under
28 15  anesthesia and analyzed for Nay /.7 expression using quantitative reverse transcription PCR
30 16  (RT-qPCR). PWT was also measured for mice that received the selective Nay 1.7 inhibitor or
32 17  vehicle. PWT was lower in FK506-treated mice than in those administered the vehicle on the
34 18  8th and 12th days after initial FK506 injection (P < 0.05). Mechanical hypersensitivity was
36 19  reversible and peaked at around 10 days after FK506 administration. OPA and light
39 20  irradiation paw withdrawal test results corroborated the hypersensitivity to light-responsivity.
41 21 Nayl.7 mRNA levels in DRG were higher in FK506-treated mice than in those administered
43 22 the vehicle on the 11th day (P <0.05). A selective Nay1.7 inhibitor reversed FK506-induced
45 23 pain. Increased Nayl.7 expression in DRG neurons may be responsible for FK506-induced
47 24 peripheral neuropathy. Our findings suggest that endogenous calcineurin regulates Nayl.7
49 25  expression. Thus, selective Nay1.7 inhibition could be a potential therapeutic strategy for
52 26  CIPS.

54 27
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31  Calcineurin inhibitors, including tacrolimus (FK506) and cyclosporine, are commonly
10 32 employed as immunosuppressive agents, particularly in transplantation medicine.
13 33 Calcineurin is a Ca?"/calmodulin-dependent serine/threonine protein phosphatase that
15 34  regulates a multitude of physiological processes, including ion channel activity and immune
17 35  function.!? Tt is expressed at high levels in T cells and the nervous system, including the
19 36  spinal dorsal horn and dorsal root ganglion (DRG).!? Primary sensory neurons in the DRG
21 37  receive signals produced by peripheral nerve endings that then incorporate and transmit them
23 38  to the spinal cord.

2% 39 The use of calcineurin inhibitors is associated with unexplained severe pain, often
28 40  referred to as calcineurin inhibitor-induced pain syndrome (CIPS), which is characterized by
30 41  burning and episodic severe pain sensitivity in the lower extremities of patients.>® Although
32 42  rare, CIPS is increasingly being recognized as a serious complication caused by calcineurin
34 43 inhibitors. In animal CIPS models, calcineurin inhibitors have been reported to induce pain
36 44  hypersensitivity via activation of synaptic N-methyl-D-aspartate (NMDA) receptors.!?
39 45  Despite the use of Ca?" channel blockers and gabapentinoids as analgesics,'? the molecular
41 46  mechanism underlying CIPS remains unclear and its treatment is challenging.

43 47 Voltage-gated sodium channels (VGSCs) are crucial for electrogenesis in excitable
45 48 cells. Nayl.7, a VGSC subtype encoded by SCNYA, plays a critical role in pain signal
47 49  transduction in humans.!'~!7 Genetic studies have recognized Nay1.7 dysfunction in human
49 50  pain disorders. Inherited gain-of-function missense mutations in Nay1.7 occur in primary
52 51  erythromelalgia,!3!7-1° and recessively inherited loss-of-function mutations in SCN94 result

54 52 in channelopathy-associated insensitivity to pain.'3-1320-22 Nay 1.7 is selectively expressed in
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DRG neurons and sympathetic ganglia, particularly being abundantly expressed in small-
diameter DRG neurons and preferentially expressed in nociceptors and during evoked action
potential firing in AB- and C-fibers.?*?8 Nay1.7 is also implicated in pain perception in small
animal models of pain. Nayl.7 expression is elevated in the DRG neurons of diabetic
neuropathy,? chronic constrictive injury (CCI),?” and paclitaxel-induced peripheral
neuropathy rat models.3%3!

In a previous study, we demonstrated that treatment of cultured bovine adrenal
chromaffin cells with FK506 or cyclosporine increased Nay1.7 expression.333 Furthermore,
erythromelalgia has been reported in patients receiving cyclosporine.3*3>-3¢ Based on these
findings, we aimed to investigate whether CIPS is involved in the upregulation of Nay1.7 in
DRG neurons in a FK506-induced pain model, which was generated in light-responsive pain
(Nay1.7-ChR2) mice previously developed by us.?’-3° This study provides novel information

about the contribution of Nay1.7 to CIPS.

Materials and Methods

Animal characteristics and pharmacological treatments

Nay1.7-ChR2 mice, weighing approximately 25-30 g, were used in this study. These mice
were generated as previously described.?’° All the mice were individually housed in a
temperature- and humidity-controlled environment with a 12-h light—dark cycle and
permitted free access to food and water. This study was conducted in strict accordance with
the guidelines for the Proper Conduct of Animal Experiments (Science Council of Japan) and
approved by the Experimental Animal Care and Use Committee (2024-511). Male mice, aged

2—-6 months, were used. All efforts were made to minimize the number of animals used and
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76  their suffering. Mice in each group were randomly selected, and the experimenter blinded to
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77  the mouse group.

10 78 The experimental protocol is illustrated in Figure 1. We used a FK506-induced
13 79  neuropathic pain model reported by Huang et al.** FK506 (Cayman Chemical, Ann Arbor,
15 80  MI, USA) was dissolved in dimethyl sulfoxide (DMSO) and phosphate-buffered saline at 0.3
17 81 mg/mL. FK506 (3 mg/kg) was intraperitoneally (i.p.) administered to mice daily for one
19 82  week under 2-3% sevoflurane anesthesia. Mice in the vehicle group were i.p. injected with
21 83  thesolvent vehicle (30% DMSO) daily for one week. The von Frey test was performed before
23 84  and after (1, 4, 8, 12, 16, 20, and 24 days) FK506 or vehicle injection. On the 11th day after
2% 85 initial injection, the mice were decapitated after inhalational sevoflurane-induced anesthesia,
28 86  and their DRGs then dissected. Nay 1.7 expression was measured using reverse transcription-
30 87  PCR (RT-PCR). The optogenetic place aversion (OPA) test was simultaneously performed
32 88  with the von Frey test. The light irradiation test was performed before FK506 injection and
34 89  onthe 11th day after initial FK506 injection. To determine the analgesic effects of DS-1971a,
36 90 aselective Nay1.7 inhibitor, the von Frey test was performed before FK506 injection, as well
39 91 as before and 2 h after DS-1971a or vehicle (0.5% methylcellulose) administration on the
41 92  11th day after initial FK506 injection.

43 93

45 94  Estimation of mechanical sensitivity using the von Frey test

47 95  Mechanical sensitivity was examined by determining the paw withdrawal threshold (PWT)
49 96 using an electronic von Frey esthesiometer (IITC Life Science Inc., Woodland Hills, CA,
55 97 USA) fitted with a polypropylene tip. Each adult mouse was placed in a 10 cm % 10 cm

54 98  suspended chamber with a metallic mesh floor. After acclimating the mice for 30 min, the
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polypropylene tip was perpendicularly applied to the plantar surface of the right and left hind
paws with sufficient force for 3—4 s. Brisk withdrawal or paw flinching was considered a
positive response. The pain threshold was calculated as the mean of three measurements.
The analgesic effect of DS-1971a on FK506-induced neuropathic pain was determined
using the von Frey test. One side of the hind paws of mice was tested for sensitivity to
mechanical stimulus before FK506 injection, as well as before and 2 h after DS-1971a or
vehicle administration on the 11th day after initial FK506 injection. DS-1971a (10 and 100
mg/kg) in 0.5% methylcellulose or a vehicle (0.5% methylcellulose) was orally administered.
The settings for DS-1971a administration were previously determined in a preliminary

study.!!

RT-PCR of DRG samples

Following euthanasia with sevoflurane, DRG samples from each mouse were obtained and
dissected. Total cellular RNA was isolated from homogenized DRG samples via acid
guanidinium thiocyanate-phenol-chloroform extraction using TRIzol reagent (Total RNA
Isolation Reagent; Invitrogen, Carlsbad, CA, USA). The quality and quantity of the extracted
RNA were assessed based on the optical density ratio at 260 and 280 nm measured using a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). We
obtained 500-1000 ng/uL RNA from DRG samples and used 2 pg total RNA to synthesize
the cDNA template. RT-PCR was performed in a 20-uL reaction mixture using a first-strand
cDNA synthesis kit (SuperScript 1I Reverse Transcriptase; Invitrogen), following the
manufacturer’s instructions. PCR amplification was then performed on a thermal cycler

(Veriti Thermal Cycler; Thermo Fisher Scientific) in a 20-uL reaction mixture containing
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1

2

3

4

5

6 122 EmeraldAmp MAX PCR Master Mix (TAKARA Bio Inc., Shiga, Japan), 1 uL (estimated
7

2 123 100 ng) cDNA template, and 0.4 uM forward and reverse primers. The following primers
:? 124 synthesized by Macrogen Global Headquarters (Seoul, Korea) were used for the PCR assays:
12

13 125 Nayl.7-forward (5'-agatgcaacagcctctacca-3"), Nayl.7-reverse (5'-gagtttggcatagacctcegt-3'),
14

15 126  B-actin-forward (5'-cgtaaagacctctatgccaaca-3'), and B-actin-reverse (5'-
16

17 127  cggactcatcgtactcctget-3"). The PCR protocol comprised an initial denaturation step (10 min
18

19 128  at 95°C), followed by 35 cycles (10 s at 98°C, 30 s at 60°C, and 60 s at 72°C) for Nay1.7 and
21 129 27 cycles (10 s at 98°C, 30 s at 55°C, and 60 s at 72°C) for B-actin, and a final extension step
23 130 (90 s at 72°C). The PCR products were separated via electrophoresis on a 2% agarose gel,
26 131  and the bands visualized using a LAS-4000 lumino image analyzer (Fujifilm, Tokyo, Japan).
28 132

30 133 Assessment of aversive behavior

32 134  Aversive behavior upon optogenetic stimulation was assessed using an OPA system
34 135  (Bioresearch Center, Nagoya, Japan),3’° which consisted of two chambers (20 cm x 24 c¢m)
36 136  connected through an entrance. Each chamber floor was lit by a 20 % 24 array of LEDs of
39 137  two different colors—green (530 nm) and blue (470 nm). To eliminate bias due to the natural
41 138  preference for dark environments, both chambers were uniformly illuminated at a power of
43 139 7 mW during the test. After habituating the mice to the chambers for 10 min with the LEDs
45 140  switched off, each mouse was allowed to move freely for a further 10 min in the chambers
47 141  with the LED switched on. The position of each mouse while the LEDs were turned on was
49 142 recorded using a video camera and analyzed with BIOBSERVE Viewer 2 software. The
55 143  percentage of time spent in each chamber during the 10-min observation period was

54 144  determined.
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Light irradiation test

To determine light-responsive hypersensitivity due to FK506-induced hyperalgesia, a light
irradiation paw withdrawal test’’3? was performed before FK506 injection and on the 11th
day after initial FK506 injection. Mice were habituated for 1 h in transparent cubicles (10 cm
X 6.5 cm x 6.5 cm) set atop a 5 mm-thick glass floor and separated from each other with
opaque dividers. Acute nocifensive behaviors were elicited using a pulsing LED light (465
nm blue light at 10 Hz; Doric Lenses Inc., Quebec, Canada) set at different intensities and
aimed at the plantar surface of the hind paw. Light intensity was determined using a light
power meter (LPM-100). As the power meter measures light intensity in mW, the light
density in mW/mm? was calculated by dividing the light intensity by the illuminated area in
square millimeters (48 mm?). The mice underwent a total of five trials of 1 s each, with 5-s
intervals between trials. The percentage of trials during which hind paw withdrawal or paw

licking occurred was recorded.

Experimental design and statistical analysis

Each behavioral experiment was performed for n >10 animals, and RT-PCR performed for
= 5 animals. Data were analyzed using two-way analysis of variance (ANOVA), followed by
Tukey’s HSD test. The results are presented as mean + standard deviation (SD). Statistical
significance was set at P < 0.05. The statistical software, JMP Pro 17 (SAS Institute, Inc.,

Cary, NC, USA) for Macintosh, was used for the analyses.
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2

3

4

5

6 167  Results

7

2 168  Mechanical hyperalgesia induced by FK506 treatment

:? 169  To examine whether FK506 treatment induces mechanical hyperalgesia, we performed the
12 . . . . .. .

13 170  von Frey test. As shown in Figure 2, compared with the vehicle group, significant mechanical
14

15 171  hypersensitivity was observed in FK506-treated mice on the 8th and 12th days after initial
16

17 172 FKS506 injection (P < 0.05). This hypersensitivity was reversible and peaked between the 8th
18

19 173 and 12th days after initial FK506 injection.

20

21 174

22

;Z 175  Upregulation of Nay1.7 expression by FK506 treatment

25 . . .

2% 176  To confirm the upregulation of Nayl.7 expression upon FK506 treatment, we examined
27

28 177  Nayl.7 mRNA levels in the DRGs of FK506- or vehicle-treated mice (Figure 3). Nayl.7
30 178  mRNA levels in the FK506-treated group were significantly upregulated on the 11th day
32 179  after initial FK506 injection compared with those in the vehicle-treated group (P = 0.007).
34 180  On the 24th day, the levels were significantly reduced compared with those measured on the
36 181  11th day (P=0.01).

39 182

41 183 Optogenetic behavior test

43 184  Asincreased Nayl.7 expression is expected to be accompanied by upregulated expression of
45 185  the light-responsive channel, channelrhodopsin 2 (ChR2), in Nay1.7—ChR2 mice (which are
47 186  light-responsive pain mice), we verified the hypothesis that enhanced light-responsivity leads
49 187  to stronger nociceptive pain upon light exposure. To investigate the change in light-
55 188  responsivity due to FK506 treatment, we performed OPA and light irradiation hind paw

54 189  withdrawal tests. As shown in the OPA test (Figure 4a), the time spent by FK506-treated
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mice in the blue floor room was significantly shorter than that spent by the vehicle group
mice on the 8th and 12th days after initial FK506 injection, which was the same time when
peak mechanical hypersensitivity was observed in the von Frey test (P < 0.05).

The FK506-treated mice were subjected to a light irradiation hind paw withdrawal
test before and after (on the 11th day after initial FK506 injection) FK506 treatment. Figure
4b shows the leftward shift of the light intensity-withdrawal response curve due to FK506

treatment, indicating that the FK506 treatment made the mice hypersensitive to light.

Analgesic effect of DS-1971a on FK506-induced neuropathic pain

To investigate the analgesic effect of DS-1971a on FK506-induced neuropathic pain, we
performed the von Frey test before FK506 injection (Pre), as well as before and 2 h after DS-
1971a or vehicle administration on the 11th day after initial FK506 injection. At 10 and 100
mg/kg, DS-1971a completely relieved FK506-induced mechanical hypersensitivity (Figure

5).

Discussion

As previously reported,*® FK506 treatment resulted in the induction of reversible neuropathic
pain (Figure 2). Mechanical hypersensitivity peaked at around the 10th day after initial
FK506 administration. Furthermore, as observed in previous in vitro studies,>?33 Nayl.7
expression was elevated in DRGs during the onset of neuropathic pain (Figure 3). FK506-
induced pain could be effectively treated with a selective Nay 1.7 inhibitor (Figure 5). These
findings suggest that increased Nay 1.7 expression plays a pivotal role in the pathogenesis of

FK506-induced pain.
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1 1

2
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4

5

6 213 Cyclosporine and FK506 form a complex with the immunophilins, cyclophilin A and
7

2 214  FK506-binding protein 12 kDa (FKBP12), thereby inhibiting the phosphatase activity of
:? 215  calcineurin® and consequently preventing the dephosphorylation of transcription factors
12 . . . .

13 216  belonging to the nuclear factor of activated T cells (NFAT) family in T cells.
14

15 217  Dephosphorylation is essential for the nuclear translocation of NFAT, which in turn activates
16

17 218  genes encoding various cytokines, including interleukin-2.

18

19 219 Although uncommon, severe pain symptoms induced by calcineurin inhibitors, termed
20

;; 220  CIPS, are characterized by burning and episodic severe pain sensitivity in the lower
;i 221  extremities, frequently accompanied by distress during standing and walking.”® In studies on
25

2% 222 CIPS model animals, gabapentinoids (a268-1 inhibitors),*® glutamate NMDA receptor
27

28 223  (NMDAR) antagonists,” and casein kinase-2 (CK2) inhibitors! have been demonstrated to
29

30 224 restore pain sensitivity. This may be due to calcineurin inhibition enhancing the activity of
31

32 225  presynaptic and postsynaptic NMDARs in the spinal dorsal horn.”4%* The a28-1 subunit
34 226  forms a complex with phosphorylated NMDARs and enhances their activity.*>** CK2, a
36 )227 serine/threonine protein kinase, enhances NMDAR activity similar to effect of
39 228  calcineurin.!* Gabapentinoids, including pregabalin and gabapentin, are clinically
41 229  employed for CIPS treatment.>*® Despite evidence suggesting that calcineurin also regulates
43 230  voltage-gated Ca>* and TRPV1 channels, their association with CIPS remains unproven.*3

45 231 Our findings indicate that FK506 induces Nayl.7 expression in the DRG. This is the
47 232 first study to demonstrate the involvement of VGSC in an FK506-induced pain model. In
49 233 clinical practice, selective Nayl.7 inhibitors may prove effective for CIPS treatment.
55 234 Previous genetic studies have indicated that Nay 1.7 is a key player in the processing of human

54 235 pain, and it has thus become a focus in research as a therapeutic target for pain
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treatment.!3-151644 Nay1.7 expression was reported to increase in animal models of
inflammation, diabetes, and CCI,?2*% and a selective Nayl.7 inhibitor could reduce
inflammatory and neuropathic pain in mice.'®#4647 Qur results provide the first direct
evidence that FK506 induces a significant increase in Nayl.7 expression in DRGs.
Furthermore, we examined nociceptive behavior after administering DS-1971a, a selective
Nayl.7 inhibitor.#! PWT was significantly increased after FK506 administration,
highlighting the potential of Nay1.7 inhibitors as new targets for CIPS treatment.

The expression of VGSCs is regulated by a variety of mediators. Nay1.7 expression is
reportedly affected by TNF-a levels and extracellular signal-regulated kinase
phosphorylation in the DRGs.?%#*4 In addition, nerve growth factor and glial cell-derived
neurotrophic factor can upregulate the expression of Na' channels in the DRG.>® These
findings suggest that Nay1.7 is involved in the FK506-mediated induction of neuropathic
pain. Further studies are required to characterize the mechanisms underlying the upregulation
of dorsal ganglionic Nay1.7 after FK506 administration.

In the present study, we demonstrated that light-responsive hypersensitivity occurs at
the onset of neuropathic pain using a light-responsive pain mouse model (Figure 4). This is
likely not solely attributable to the increased Nayl.7 expression observed; the design of
genetic modification in Nayl.7-ChR2 mice may likely result in an increase in ChR2
expression occurring concurrently with the increase in Nayl.7 levels.?¢3% This finding
indicates that Nay1.7-ChR2 mice can be used to screen for changes in the expression of
Nayl.7.

This study had several limitations. First, although sex-related differences in pain

threshold may exist, we did not focus on these differences in the current study; we
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1 1

2

3

4

5

6 259  customarily used male mice, as was done in previous reports.®384! Second, we concluded
7

g 260  that FK506-induced Nay1.7 upregulation contributes to pain induction based on the increased

10 261  Nayl.7 mRNA levels detected via RT-PCR, enhanced light-responsive pain expected from

13 262  Nayl.7 upregulation, and attenuation of FK506-induced pain by a Nay 1.7 inhibitor. Although
1: 263  additional data obtained from western blotting analysis or voltage-clamp recordings would
:? 264  provide multifaceted confirmation of Nay1.7 upregulation, these were not performed in the
ig 265  present study. Third, we demonstrated Nay 1.7 upregulation using a mouse model that induces
;; 266  pain with FK506 administration; however, we considered that this cannot be directly applied
;i 267  to the pathogenesis of CIPS in humans. Further research, including clinical studies, is
;2 268 necessary to elucidate the pathogenesis of CIPS in humans. Fourth, calcineurin is a
;Z; 269  dephosphorylating enzyme; therefore, its inhibition maintains protein phosphorylation.
;g 270  Phosphorylation of Nayl1.7 or other molecules is likely involved in CIPS. However, the
% )271 present study did not investigate these possibilities.

gg 272

g? 273  Conclusion

38

39 274  We found that Nay1.7 was upregulated in the DRG of FK506-induced pain mice, and that its

41 275  inhibition attenuated FK506-induced hyperalgesia. These findings provide new insights into
42
43 276  the physiological function of calcineurin in pain transmission via the regulation of Nay1.7 at
44
45 277  the DRG level. This information advances our understanding of the molecular mechanisms
46

47 278  underlying CIPS and may help in developing a new strategy to deal with CIPS.
¥ 279
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Figure legends

Figure 1. In vivo experimental design. (a) FK506 or a vehicle (30% dimethyl sulfoxide
[DMSO]) was intraperitoneally (i.p.) injected into mice daily for one week. The von Frey
test was performed before and after (1, 4, 8, 12, 16, 20, and 24 days) injecting FK506 or the
vehicle. On the 11th day after initial FK506 or vehicle injection, dorsal root ganglia (DRGs)
were dissected from mice in each group, and Nayl.7 expression measured using reverse
transcription PCR (RT-PCR). The optogenetic place aversion (OPA) test was simultaneously
performed with the von Frey test. A light irradiation test was performed before FK506
injection and on the 11th day after initial FK506 injection. (b) To determine the analgesic
effects of DS-1971a, the von Frey test was performed before FK506 injection, as well as
before and 2 h after administering DS-1971a or a vehicle (0.5% methylcellulose) on the 11th

day after initial FK506 injection.

Figure 2. Paw withdrawal test (von Frey test). The von Frey test was performed before (Pre)
and after (1, 4, 8, 12, 16, 20, and 24 days) injecting FK506 or a vehicle (30% dimethyl
sulfoxide [DMSO]). The hind paw withdrawal data were analyzed using two-way analysis
of variance, (ANOVA) followed by Tukey’s HSD test. All results are presented as mean =+

standard deviation (SD) for 10 or more animals. *P < 0.05, compared with the vehicle group.

Figure 3. Reverse transcription PCR (RT-PCR) for Nayl.7 mRNA expression in dorsal root
ganglion (DRG). Nayl.7 mRNA expression in DRG neurons measured using RT-PCR. B-
actin was used as a positive control to confirm successful mRNA extraction and equal loading

of samples. Relative levels of Nay /.7 mRNA/B-actin mRNA are shown. Data were analyzed
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1

2

3

4

5

6 }491 using two-way analysis of variance (ANOVA), followed by Tukey’s HSD test, and presented
7

2 492  as mean =+ standard deviation (SD) for five animals.

10

1 493

12

13 494  Figure 4. Optogenetic place aversion (OPA) and light irradiation hind paw withdrawal tests.
14

15 495  (a) The OPA test was performed before (Pre) and after (1, 4, 8, 12, 16, 20, and 24 days)

17 496 injecting FK506 or a vehicle. Length of stay in the blue light floor room (%) was analyzed
18
19 497  using an unpaired #-test. All results are presented as mean + standard deviation (SD) for 10
20
;; 498  or more animals. *P < 0.05, compared with the vehicle group. (b) The blue light irradiation

23 499  hind paw withdrawal test was performed before (Pre-FK506) and after (Post-FK506; on the

25 e 1 e . T .
2% 500  11th day after FK506 initial injection) FK506 treatment. Red arrows indicate a leftward shift
27

28 501  of'the curve due to FK506 treatment. Data were analyzed using two-way analysis of variance
29

30 502 (ANOVA), followed by Tukey’s HSD test. All results are presented as mean + standard
32 503  deviation (SD) for 10 or more animals. *P < 0.05, compared with Pre-FK506.

34 504

36 505  Figure 5. Analgesic effect of DS-1971a on FK506-induced neuropathic pain. The von Frey
39 506  test was performed before FK506 injection (Pre), as well as before and 2 h after administering
41 507  DS-1971a or a vehicle (0.5% methylcellulose) on the 11th day after initial FK506 injection.
43 508  Data were analyzed using two-way analysis of variance (ANOVA), followed by Tukey’s
45 509  HSD test. All data are presented as mean + standard deviation (SD) for 10 animals. *P < 0.05,

47 510  compared with Pre; TP < 0.05, compared with the vehicle group.
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Figure 1. In vivo experimental design. (a) FK506 or a vehicle (30% dimethyl sulfoxide [DMSO]) was injected
into mice intraperitoneally (i.p.) daily for one week. The von Frey test was performed before and after (1, 4,
8, 12, 16, 20, and 24 days) injecting FK506 or the vehicle. On the 11th day after initial FK506 or vehicle
injection, dorsal root ganglions (DRGs) were dissected from mice in each group, and Nay1.”7 expression
measured using reverse transcriptase PCR (RT-PCR). The optogenetic place aversion (OPA) test was
performed at the same time as the von Frey test. A light irradiation test was performed before FK506
injection and on the 11th day after initial FK506 injection. (b) To determine the analgesic effects of DS-
1971a, the von Frey test was performed before FK506 injection, as well as before and 2 h after
administering DS-1971a or a vehicle (0.5% methylcellulose) on the 11th day after initial FK506 injection.
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46 8, 12, 16, 20, and 24 days) injecting FK506 or a vehicle (30% dimethyl sulfoxide [DMSQ]). The hind paw

47 withdrawal data were analyzed using two-way analysis of variance, (ANOVA) followed by Tukey’s HSD test.

All results are presented as mean + standard deviation (SD) for 10 or more animals. *P < 0.05, compared
with the vehicle group.
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Figure 3. Reverse transcription PCR (RT-PCR) for Nay1.7 mRNA expression in dorsal root ganglion (DRG).
Nay1l.7 mRNA expression in DRG neurons measured using RT-PCR. B-actin was used as a positive control to

confirm successful mMRNA extraction and equal loading of samples. Relative levels of Nay1.7 mRNA/B-actin
mRNA are shown. Data were analyzed using two-way analysis of variance (ANOVA), followed by Tukey’s
HSD test, and presented as mean % standard deviation (SD) for five animals.
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Figure 4. Optogenetic place aversion (OPA) and light irradiation hind paw withdrawal tests. (a) The OPA test
was performed before (Pre) and after (1, 4, 8, 12, 16, 20, and 24 days) injecting FK506 or a vehicle. Length
of stay in the blue light floor room (%) was analyzed using an unpaired t-test. All results are presented as
mean * standard deviation (SD) for 10 or more animals. *P < 0.05, compared with the vehicle group. (b)
The blue light irradiation hind paw withdrawal test was performed before (Pre-FK506) and after (Post-
FK506; on the 11th day after FK506 initial injection) FK506 treatment. Red arrows indicate a leftward shift
of the curve due to FK506 treatment. Data were analyzed using two-way analysis of variance (ANOVA),
followed by Tukey’s HSD test. All results are presented as mean % standard deviation (SD) for 10 or more
animals. *P < 0.05, compared with Pre-FK506.
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Figure 5. Analgesic effect of DS-1971a on FK506-induced neuropathic pain. The von Frey test was
performed before FK506 injection (Pre), as well as before and 2 h after administering DS-1971a or a vehicle
(0.5% methylcellulose) on the 11th day after initial FK506 injection. The data were analyzed using one-way

ANOVA followed by Bonferroni post-hoc analysis or an unpaired t-test. All data are presented as mean
standard deviation (SD) for 10 animals. *P < 0.05, compared with Pre; TP < 0.05, compared with the
vehicle group.
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